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The dynamic generalization of the Peierls-Nabarro equation for dislocations cores in an isotropic elastic
medium is derived for screw and edge dislocations of the “glide” and “climb” type, by means of Mura’s
eigenstrains method. These equations are of the integrodifferential type and feature a nonlocal kernel in space
and time. The equation for the screw differs by an instantaneous term from a previous attempt by Eshelby.
Those for both types of edges involve in addition an unusual convolution with the second spatial derivative of
the displacement jump. As a check, it is shown that these equations correctly reduce, in the stationary limit and
for all three types of dislocations, to Weertman’s equations that extend the static Peierls-Nabarro model to finite
constant velocities.
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I. INTRODUCTION

Plastic deformation in crystals occurs as dislocations
move through the material under an applied stress.1,2 Major
quantitative progresses in plasticity modeling arose with the
outbreak of the Peierls-Nabarro �PN� integral equation.3–5

Aimed at computing dislocation core shapes, this equation
establishes a quantitative link between atomic forces, nowa-
days described by means of the material-dependent � poten-
tial �a “reduced” lattice potential specialized to shear
deformations�6 and the dislocation core structure. Since, nu-
merous refinements of various nature improved the agree-
ment between the PN model and molecular statics simula-
tions, though best matches with experiment for the core
width and the Peierls stress3 are obtained so far not by using
the PN model but by addressing ab initio the full three-
dimensional structure of dislocations cores. Still, in spite of
known drawbacks, the PN equation remains widely used.
These questions have recently been reviewed by Schoeck.7

Yet, the dynamic instance of the Peierls-Nabarro equation
appears as a long-standing elusive issue in dislocation theory.
To date, simulations �using molecular dynamics8–10 or phase-
field methods11� constitute the privileged path to specific dy-
namic core-related phenomena. Among the latter are the
long-hypothesized transonic or supersonic transitions,12–16

first reported in atomistic simulations17–20 but only recently
exhibited experimentally �in a two-dimensional plasma
crystal�.21 However, their current understanding is far from
complete, given the variety of situations that can arise de-
pending on the nature of the crystal and environmental con-
ditions. Analytical progresses have also been made in this
direction but most often at the price of restrictive approxi-
mations for the dislocation core.22–25 It should be noted that
the major difficulty involved in sonic transitions in real crys-
tals, recognized long ago,14 resides in that a dislocation can
be part subsonic and part supersonic at the same time due to
spatial-dispersion effects.19 Tackling this problem is not at-
tempted here. However, in the above context and even within
a nondispersive approximation, a one-dimensional dynamic
PN equation that leaves all freedom to the core shape would
certainly constitute a useful additional tool.

The truth is, in his classical ’53 paper on the dynamic
motion of dislocations,13 Eshelby did write down a dynamic

generalization of the PN equation for the screw dislocation.
However, acknowledging its complexity he did not use it,
focusing instead on an equation of motion for screw disloca-
tions under an assumption of rigid core. A dynamic PN equa-
tion for edge dislocations was never proposed and in practice
the only velocity-dependent PN equations studied so far are
Weertman’s16 and its modifications,26 which apply to con-
stant velocities only. Despite a number of analytical explo-
rations of the dynamic regime, this gap has not been filled in
yet.

Quite unexpectedly, a close examination of Eshelby’s dy-
namic equation for screws13 leads one to conclude that it
does not reduce to Weertman’s equation in the stationary
limit. This can be seen from the calculations in Appendix B
1. One clue to the reason of this discrepancy is provided by
the recent observation27 that classical static expressions for
dislocation-generated displacements, such as that found in
Refs. 1 and 2, miss one term �a distribution� that represents
the nonelastically relaxed slip. This term proves irrelevant to
the standard static PN model and cannot be spotted from the
static elastic strains alone since it preserves registry �Sec. II�.
It is shown below that one term of similar origin is relevant
to dynamic calculations and provides the explanation for the
above discrepancy. With this observation, the Green’s func-
tion machinery2 can safely be harnessed to produce the de-
sired dynamic PN equations for screws and edges that cor-
rectly admit Weertman’s equations as stationary limits,
provided that attention is paid to distributional parts in car-
rying out various Fourier integrals �Sec. III�.

For convenience, indices i=x, y, and z or 1, 2, and 3 are
used indifferently hereafter. To ease calculations, most of the
integrals are read in Ref. 28. Reference is made to these
integrals by their book classification number, preceded by
“G.R.”

II. GREEN’S FUNCTION APPROACH TO DISLOCATIONS

A. Eigenstrains and dynamic Green’s function

Inclusions or defects such as dislocations produce distor-
tions in their surrounding medium. The total distortion � is
the gradient of the material displacement u, such that
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�ij�x�=� jui. Its symmetric part is the total strain �ij
= �1 /2���ij +� ji�. Assuming small deformations, the total dis-
tortion produced by a defect can be written as the sum of a
linear-elastic distortion �e and of a “nonlinear” part �� usu-
ally called eigendistortion,2,29 �ij =�ij

e +�ij
� , none of the latter

quantities being a gradient in general. Whereas the eigendis-
tortion represents a purely geometric, rigid, i.e., nonelasti-
cally relaxed,30 contribution to the total distortion that results
from the insertion of the inclusion, the elastic distortion rep-
resents the elastic relaxation correction that confers to � a
gradient character. A similar decomposition holds for the
strain: �ij =�ij

e +�ij
� .

The Green’s function approach to dislocations2 consists in
representing the dislocation by an eigendistortion �localized
on the glide plane� whose physical interpretation is given
below �Sec. II B� and in computing the induced displacement
field u using an elementary solution of the equations of elas-
ticity. The total distortion �ij ensues, from which �e is ob-
tained by subtracting ��. Finally, the stress � follows from
the linear-elastic strain εe=sym �e and linear elasticity, as

�ij = Cijkl�kl
e = Cijkl��kl − �kl

� � = Cijkl��kul − �kl
� � , �1�

where Cijkl=Cijlk=Cklij are components of the elastic tensor.
Momentum conservation in the form � j�ij =��t

2ui, where � is
the mass density, is written as

Cijkl� j�kul − ��t
2ui = � j�ij , �2�

where �ij �Cijkl�kl
� . In an infinite medium, the Green’s func-

tion of the displacement, G�x , t�, is the solution correspond-
ing to a pointlike source located at the origin of space and
time �the minus sign is conventional�,2

Cijkl� j�kGlm�x,t� − ��t
2Gim�x,t� = − �im��x���t� . �3�

The following space-time Fourier transform �FT� convention
is used hereafter �f is an arbitrary function�:

f�x,t� =� d3k

�2	�3

d


2	
f�k,
�ei�k·x−
t�. �4�

Introducing the acoustic tensor N of components Nij
=Cikljkkkl and the identity matrix I of components �ij, the
solution to Eq. �3� reads in matrix notation

G�k,
� = �N − �
2I�−1. �5�

It is convenient for the problem at hand to work in the mixed
“space Fourier modes/time” representation. By convolution
of the elementary solution, the solution to Eq. �2� is obtained
as

ui�x,t� = − i� dt�� d3k

�2	�3Gij�k,t − t��kk� jk�k,t��eik·x,

�6�

where the integrals run from −� to +� and the stress follows
from Eq. �1�. Henceforth, we confine ourselves to the sim-
plest isotropic case for which

Cijkl = ��ij�kl + ��ik� jl + �il� jk� , �7�

where  is the shear modulus and � is the Lamé coefficient.
Introduce moreover the shear and longitudinal sound veloci-
ties cS=� /� and cL=���+2� /�. The inverse in Eq. �5� is
immediate in the basis of longitudinal and transverse projec-

tors with respect to k̂=k /k. Thus,

N = k2��I − k̂k̂� + �cL/cS�2k̂k̂� �8�

and the dynamic Green’s function of the displacement reads

G�k,
� = �N − �
2I�−1

=
1


� I − k̂k̂

k2 − �
/cS�2 +
cS

2

cL
2

k̂k̂

k2 − �
/cL�2	 . �9�

Its static limit is more conveniently expressed in terms of the
Poisson ratio �=� / �2��+��, such that cS

2 /cL
2 = �1

−2�� / �2�1−���,

Gij�k� � Gij�k,
 = 0� =
1

k2��ij −
k̂ik̂ j

2�1 − ��
	 . �10�

Let ��x� denote the Heaviside function. Inverting the time-
Fourier transform in Eq. �9� with a suitable choice of contour
in the 
-complex plane31 yields the following retarded
Green’s function, which describes waves going away from
the source:

Gij�k,t� =
��t�cS

2

k
� 1

cS
sin�cSkt���ij − k̂ik̂ j� +

1

cL
sin�cLkt�k̂ik̂ j	 .

�11�

B. Volterra dislocations and importance of history

The problem of finding the fields associated to a disloca-
tion with an extended core is most efficiently split up in two
steps. First, a solution is derived for a Volterra dislocation of
infinitely narrow core, which only slightly complicates the
above calculation for a pointlike source. In the second step, a
convolution product of the obtained elementary solution with
the shape of the extended core, considered as a superposition
of Volterra dislocations, is taken according to the superposi-
tion principle of solutions of linear elasticity. This approach,
introduced by Eshelby,5 is well suited to obtaining the
Peierls-Nabarro integral equation. Indeed in this equation
�one of stress balance� where the core shape itself is the
unknown, the convolution integral cannot be explicitly
evaluated in general.

The eigendistortions associated to the three relevant types
of rectilinear infinite Volterra dislocations, with dislocation
line along the Oz axis, are represented as follows �the core
lies at the origin of the Cartesian axes�:

�ij
� �x� = b��y���− x��i3� j2 �screw� , �12a�

�ij
� �x� = b��y���− x��i1� j2 �glide edge� , �12b�

YVES-PATRICK PELLEGRINI PHYSICAL REVIEW B 81, 024101 �2010�

024101-2



�ij
� �x� = b��y���− x��i2� j2 �climb edge� . �12c�

The norm of the Burgers vector b is b. For the screw, glide
edge, and climb edge, the nonzero component of the Burgers
vector is b3, b1, and b2, respectively. The slip plane, where
the material displacement u experiences a discontinuity, has
been chosen as y=0 in all cases. In Eq. �12�, index i refers to
the components of the Burgers vector and index j to the
normal to the plane of discontinuity. Hence, the Burgers vec-
tor of the screw is parallel to the dislocation line �in this case,
the notion of slip plane proceeds from usual considerations
about extended loops1�, that of the glide edge is orthogonal
to the line and contained in the slip plane, whereas that of the
climb edge is orthogonal to the slip plane. Figure 1 illustrates
these three types of Volterra dislocations in which the reader
familiar with fracture theory will recognize dislocation coun-
terparts of the three conventional modes of fracture,33 the
correspondence being �mode III—tearing, mode II—sliding,
and mode I—opening� ↔ �screw, glide edge, and climb
edge�. The two kinds of edges are of distinct nature: with our
sign and orientation conventions, the positive glide edge is
obtained by compressing the half space y�0 along Ox in the
positive x direction, whereas the positive climb edge results
from inserting one extra half plane of atoms along the nega-
tive x semiaxis, which requires to “open” the pre-existing
lattice in the y direction �black region in Fig. 1�c��. As is
shown below, these differences express themselves in the
analytical expressions of the displacement fields. In usual
conditions, the climb edge moves by “climb,” an essentially
diffusive mode that involves slow migration of atoms and
interstitials. In quasistatic situations, climb dislocations are
constituents of sessile prismatic loops or Frank partials.1

However, Weertman has emphasized their potential impor-
tance in fast dynamics as well.15 This question is addressed
in Sec. III D.

Equations �12� are particular cases of the more general
expression for a dislocation line2

���x� = b � n�x��S�x� , �13�

where �S is a Dirac distribution localized on the discontinuity
surface S of normal n�x�.34 The relevance of the location of
this discontinuity surface to nonuniform motion is now dis-
cussed. Relative to the pristine crystalline state, the structural
modification generated by the presence of a dislocation can
be seen as the cumulative effect of elastic atomic displace-
ments, produced by the dislocation core and associated to
long-range stresses, and of permanent �irreversible� displace-

ments of atoms accompanying dislocation motion from its
nucleation location to its current location. The above
eigendistortions are associated to the permanent displace-
ments. By definition, the integral of the relative material
�“atomistic”� displacements,

�
C

dl
�ui

�l
�x� = bi

loc, �14�

where C is a closed contour surrounding the dislocation, is
nonzero, equal to the local Burgers vector and tends to the
true Burgers vector as the loop radius goes to infinity.1 This
nonzero value materializes a discontinuity of the total mate-
rial displacement in the medium. From a physical standpoint,
once the atomic perturbations generated by the dislocation
motion have been damped, crystal integrity is restored be-
hind the dislocation and the permanent displacements are not
observable. For this reason, the above integral is contour
independent for contours large enough compared to the core
size and provides no information on the trajectory followed.
Alternatively, the dislocation can be considered as constitut-
ing the boundary line of the surface S in Eq. �13� so that
prescribing this surface removes in practice the indetermi-
nacy of the position of the displacement discontinuity. There-
fore, in the static limit and for an infinitely thin dislocation
line, the surface can be chosen arbitrarily since the location
of the dislocation line alone uniquely determines the elastic
strains and stresses.

Resolving this arbitrariness by deciding to localize �� on
the geometric surface spanned by the dislocation line during
its motion puts in information about the trajectory in the
problem.2 For instance, in expressions �12�, the dislocation
“comes” from x=−�. While this information is irrelevant in
the static case for infinitely thin dislocations, this is not true
any more in fast dynamics or for dislocations with extended
core such as those considered in the Peierls-Nabarro model.
In the first case, the atoms perturbed by a dislocation passing
by oscillate and act as wave sources as long as the perturba-
tion is not fully damped; in the second case, the stacking
fault that constitutes the core locally stores potential energy,
in particular, in case of dissociation and emission of one
partial dislocation, and acts as a continuous stress source in
the zones where the eigenstrain varies much.

C. Static Peierls-Nabarro equation

For clarity and further reference, the method to obtain the
static PN equation with the Green’s function method is
briefly reviewed. The total displacement of a screw disloca-
tion, due to Burgers,35 is given in all reference textbooks
�e.g., Refs. 1 and 2� as

u3�x� =
b�

2	
=

b

2	
arg�x + iy� =

b

2	
arctan

y

x
, �15�

where � is the polar angle in the �x ,y� plane. However, with
the principal determination of the arctangent, the latter ex-
pression in Cartesian coordinates is incomplete. Imposing a
cut on the negative x semiaxis, the correct result instead
reads27

FIG. 1. �Color online� Three different types of Volterra disloca-
tions �core of null width�, as computed using Eqs. �16�, �23�, and
�24� with �=0.3, �g=10−4, and b=1�
x
 , 
y
�5� �Ref. 32�.
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u3�x� =
b

2	
arctan

y

x
+

b

2
sign�y���− x� , �16�

where the distributional part represents the permanent dis-
placement. The relative slip � between both sides of the slip
plane is

��x� = u3�x,y = 0+� − u3�x,y = 0−� = b��− x� . �17�

Even though Eq. �16� is pretty obvious form the first equality
in Eq. �15� and the above elementary remark, retrieving Eq.
�16� using the static Green’s function proves a useful exer-
cise prior to considering edges and dynamic calculations.
Indeed, the calculation is given by Mura �Ref. 2, p. 17�, with
again Eq. �15� as a result. While the cause here may reside in
the tables used by this author, the correct calculation is re-
produced in Appendix A for definiteness.

The nonzero components of the total distortion are ob-
tained by differentiation of Eq. �16�,

�zx = uz,x =
b

2	
�	��x�sign�y� −

y

x2 + y2	 −
b

2
sign�y���x�

= −
b

2	

y

x2 + y2 , �18a�

�zy = uz,y =
b

2	

x

x2 + y2 + b��y���− x� . �18b�

In these expressions, use has been made of the identity
arctan x+arctan 1 /x= �	 /2�sign x, from which follows the
derivative �arctan 1 /x��=	��x�−1 / �1+x2�. The standard
textbook expressions of the elastic strain follow from �e

=sym��ij −�ij
� �. It should be noted that distributional parts

cancel out, and are absent from the latter expressions, con-
sistently with the fact that a static strain does not depend on
history �see previous section�. Stresses are obtained by mul-
tiplying the �shear� strain components by 2, as1

�zx = −
b

2	

y

x2 + y2 , �zy =
b

2	

x

x2 + y2 . �19�

To construct the PN equation, information on the slip plane
is reintroduced by computing the stress at y=0�. Thus

�zx�x,0�� = −
b

2	
lim
y→0

y

x2 + y2 = −
b

2
sign�y���x� ,

�20a�

�zy�x,0� =
b

2	
lim
y→0

x

x2 + y2 =
b

2	
p.v.

1

x
. �20b�

where p.v. stands for the principal value. Given expression
�17� of the differential slip, the stress �Eq. �20b�� produced
by the dislocation on its slip plane is rewritten as the convo-
lution product

�zy�x,0� = −


2	
p.v.� dx�

���x��
x − x�

. �21�

This expression now holds for any core shape function ��x�.
Adding an applied resolved shear stress �a�x� to Eq. �21� and

balancing their sum by the b-periodic pullback force of
atomic origin which derives from the stacking fault � poten-
tial, hereafter denoted by f���, the static PN equation for the
screw is obtained

−


2	
p.v.�

−�

+�

dx�
���x��
x − x�

+ �a�x� = f����x�� . �22�

At this point, boundary conditions express the history of dis-
location formation; typically ��−��=�0+b and ��+��=�0
for a single dislocation coming from x=−� �Ref. 26� or
�����=�0 for a dipole,4,36 where �0 is the homogeneous
solution such that �a= f���0�.

In the glide edge case, the nonzero displacement compo-
nents are ux�x ,y� and uy�x ,y�. The Fourier integrals in Mu-
ra’s method are slightly more complicated but similar to that
for the screw. One finds37

ux�x,y� =
b

4	

1

1 − �

xy

x2 + y2 +
b

2	
arctan

y

x
+

b

2
sign�y���− x� ,

�23a�

uy�x,y� =
b

4	

1

1 − �

y2

x2 + y2 −
b

8	

1 − 2�

1 − �
log��g

2�x2 + y2�� ,

�23b�

where �g is of order the inverse of half the system size. The
sole difference between the present approach and classical
results is the presence of the additional distributional term
�b /2�sign�y���−x� in ux. We recall that because of one diver-
gent integral, uy is determined only up to an additive con-
stant that blows up as �g→0. For this reason, different
equivalent forms of uy are found in the literature.5,35,38,39 This
complication, linked to torsion, is well documented �see Ref.
1 p. 78�. Equation �23b� is the form obtained by Eshelby and
Mura.2,5 Analogous expressions for the climb edge can be
written as

ux�x,y� = −
b

4	

1

1 − �

x2

x2 + y2 +
b

8	

1 − 2�

1 − �
log��c

2�x2 + y2�� ,

�24a�

uy�x,y� = −
b

4	

1

1 − �

xy

x2 + y2 −
b

2	
arctan

x

y
+

b

4
sign�y� ,

�24b�

where �c=�g exp 1 / �1−2��.37 When rotated clockwise by a
angle 	 /2, i.e., subjected to substitutions �x ,y�→ �−y ,x� and
�ux ,uy�→ �−uy ,ux�, Eqs. �24� become identical to Eqs. �23�,
up to differences in �c and in the distributional part. These
differences are mathematical renderings of the different na-
ture of glide and climb edges emphasized in Sec. II B,
though both lead �in the static case only� to identical elastic
strains and stresses characteristic of an edge dislocation.

The ensuing static PN equation for the glide edge, for
which the resolved stress is �xy, is identical to Eq. �22� save
for a prefactor 1 / �1−�� in front of the integral and for the
definition of ��x��ux�x ,0+�−ux�x ,0−�. The static PN equa-
tion for the climb edge, driven by a tensile �yy stress com-
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ponent is formally the same as that for the glide edge but
with now ��x��uy�x ,0+�−uy�x ,0−�. However in the latter
case the relevant specialized lattice potential, linked to the
introduction of interstitials, has not been properly defined to
date to this author’s knowledge.

Thus, in all three cases the distributional term plays no
part because it does not show up in the elastic strain. The
situation markedly changes in dynamics.

III. DYNAMIC PEIERLS-NABARRO EQUATION

The dynamic calculation is quite analogous to the above
procedure, using the dynamic Green’s function �Eq. �11��
instead of the static one. The main difference is that time-
dependent distributional contributions, which generalize the
above static ones, are no more irrelevant and provide impor-
tant contributions to the PN dynamic equation. The difficulty
mainly resides in computing cumbersome Fourier integrals.
One approach could consist in using the Cagniard-de Hoop
method, as proposed by Markenscoff and Clifton40 to address
dynamic dislocation problems. However, using “brute force”
and reference tables of integrals proved more expedient for
the case at hand. The edge cases require one key integral that
we could not find in tables, which is computed by means of
a differential equation. Appendix B contains a detailed
sketch of these calculations. Hereafter, 
x
2

2=x2+y2.

A. Principle

The dynamic PN equation is obtained in the following
manner. First, one computes the elementary stress field pro-
duced by a time-dependent eigendistortion �ij

� �x , t� repre-
senting an “instantaneous” Volterra dislocation located at x
=y=0 and present at t=0. We take �ij

� �x , t� equal to any of
Eqs. �12�, multiplied by the Dirac impulse ��t�. Eshelby and
more recent works22 instead consider elementary Volterra
dislocations proportional to ��−t� but the present approach
simplifies the calculation of the stresses in the perspective of
obtaining a PN equation. Mutatis mutandis, we then follow
Eshelby5 by appealing to the identity

��x,t� = ��+ �,t� −� d�dx���− �x − x�����t − ��
��

�x
�x�,�� .

�25�

Here and below, double integrals over space and time have
implicit bounds �� unless otherwise stated and are denoted
by a single integral sign. The integral term expresses the
spectrum of instantaneous Volterra dislocations associated to
the core shape function �. No dislocation is associated to the
homogeneous slip ��+� , t�. Invoking linear superposition, if
�elem�x , t� is the shear stress on the slip plane generated by a
Volterra dislocation b��−x���t�, the shear stress generated by
the continuous slip ��x , t�=ui�x ,y=0+�−ui�x ,y=0−� reads,
by Eq. �25�,

��x,t� = −
1

b
� d�dx��elem�x − x�,t − ��

��

�x
�x�,�� . �26�

An applied inhomogeneous stress in the bulk moreover pro-
duces a stress �a�x , t� on the slip plane, to be added to Eq.

�26�. Balancing the resulting expression by the pullback
stress yields the dynamic PN equation,

−
1

b
� d�dx��elem�x − x�,t − ��

��

�x
�x�,�� + �a�x,t�

= f����x,t�� ,

�27�

where ���� , t� is such that �a��� , t�= f������ , t��. We
now proceed to determine �elem for the different kinds of
dislocations.

B. Screw dislocations

Then, the displacement associated to the instantaneous
screw reads �see Appendix B 1�

uz�x,t� =
bcS

2	 � xy

�cS
2t2 − y2�

��cSt − 
x
2�
�cS

2t2 − 
x
2
2

+ 	 sign�y���− x���cSt − 
y
�	 . �28�

In this expression, the Dirac term is the dynamic counterpart
of the static distributional term in Eq. �16� and represents a
wave leaving the slip plane orthogonally to it. The associated
elementary shear on the slip plane y=0 follows as

�elem�x,t� � �zy�x,y = 0,t� = lim
y→0

� �uz

�y
�x,y,t� − �zy

� �x,y,t�	 .

�29�

Introducing the kernel

K�x,t� =
x

2cSt2

��cSt − 
x
�
�cS

2t2 − x2
, �30�

one directly finds

�zy
elem�x,y = 0,t� =

b

	
K�x,t� −

b

2cS
��− x����t� . �31�

Applying Eq. �26� produces

�zy�x,t� = −


	
� d�dx�K�x − x�,t − ��

��

�x
�x�,��

+


2cS
� d�dx���− �x − x������t − ��

��

�x
�x�,�� .

�32�

Assuming that �� /�t�+� , t�=0, the second integral reduces
to

� d�dx���− �x − x������t − ��
��

�x
�x�,��

= �
x

+�

dx�
�2�

�x � t
�x�,t�

= −
��

�t
�x,t� , �33�

which gives the time-dependent stress
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�zy�x,t� = −


	
� d�dx�K�x − x�,t − ��

��

�x
�x�,�� −



2cS

��

�t
�x,t� .

�34�

Hence, from Eq. �27�, the dynamic PN equation for the
screw is

−


	
� d�dx�K�x − x�,t − ��

��

�x
�x�,�� −



2cS

��

�t
�x,t� + �a�x,t�

= f����x,t�� .

�35�

Apart from the presence of the driving stress �a, this equa-
tion differs from Eshelby’s �Eq. �21� of Ref. 13� by the in-
stantaneous term proportional to �� /�t. This term should be
replaced here and henceforth by �̃ /�t, where �̃�x , t�
=��x , t�−��+� , t�, whenever boundary conditions require
�� /�t�+� , t��0.

C. Glide edge dislocation

Dynamic displacement fields for the instantaneous glide
edge are derived in Appendix B 2. They read

ux�x,t� =
bcS

2	
��t�� 2xy


x
2
4� cS

cL

2cL
2 t2 − 
x
2

2

�cL
2 t2 − 
x
2

2
��cLt − 
x
2�

−
2cS

2t2 − 
x
2
2

�cS
2t2 − 
x
2

2
��cSt − 
x
2�	

+
xy

�cS
2t2 − y2�

��cSt − 
x
2�
�cS

2t2 − 
x
2
2

+ 	 sign�y���− x���cSt − 
y
�� , �36a�

uy�x,t� =
bcS

2	
��t�� 2


x
2
4� cS

cL

x2
x
2
2 − cL

2 t2�x2 − y2�
�cL

2 t2 − 
x
2
2

��cLt − 
x
2�

−
x2
x
2

2 − cS
2t2�x2 − y2�

�cS
2t2 − 
x
2

2
��cSt − 
x
2�	

+
��cSt − 
x
2�
�cS

2t2 − 
x
2
2 � . �36b�

The corresponding expressions for the distortions and
stresses are easy to compute but lengthy so that only
�xy�x ,y=0�, the relevant stress for the PN equation, is repro-
duced here. Using �xy =��xy

e +�yx
e �=�ux,y +uy,x−�xy

� � with
�xy

� =b��−x���y���t� yields

�xy
elem�x,y = 0,t� =

b

	
�K1�x,t� +

�K2

�x
�x,t�	 −

b

2cS
��− x����t� ,

�37�

where the kernels are

K1�x,t� =
2cS

x3 � cS

cL

2cL
2 t2 − x2

�cL
2 t2 − x2

��cLt − 
x
�

−
2cS

2t2 − x2

�cS
2t2 − x2

��cSt − 
x
�	 +
x

2cSt2

��cSt − 
x
�
�cS

2t2 − x2
,

�38a�

K2�x,t� =
cS

2

��cSt − 
x
�
�cS

2t2 − x2
. �38b�

To arrive at Eq. �37�, the prescription ��t=0�=1 /2 was used.
The highly singular contribution �K2 /�x in Eq. �37� is a dis-
tribution that should be used by means of integration by
parts. Proceeding as for the screw, the following dynamic PN
equation is obtained

−


	
� d�dx�K1�x − x�,t − ��

��

�x
�x�,��

−


	
� d�dx�K2�x − x�,t − ��

�2�

�x2 �x�,�� −


2cS

��

�t
�x,t�

+ �a�x,t� = f����x,t�� .

�39�

Remarkably, this equation features a convolution with the
second derivative �2� /�x2 that was not present for the screw.
Whereas the term �� /�x, maximal at the dislocation center,
is linked to the position of the dislocation, the second-
derivative term provides contributions from leading and trail-
ing regions of the core and thus has bearings on the disloca-
tion width.

D. Climb edge dislocation

Because in principle climb dislocation move diffusively,1

the question of their “relativistic” velocity regime might ap-
pear irrelevant. It was however put forward some decades
ago in a stationary context by Ang and Williams41 and
Weertman.16,42 Weertman advocated that since the atomic
spacing across a stacking fault may differ from that across an
unfaulted plane, an out-of-plane component of the Burgers
vector, of the climb type, ought to be associated to partial
dislocations that bound stacking faults on their glide plane.42

This component would then move in concert with the in-
plane dislocation components, with the fast velocity of the
latter and in a diffusionless fashion. Dissociation of a perfect
dislocation into partials indeed leaves a possibility that lead-
ing and trailing partials have out-of-plane components of op-
posite sign, leading to an overall asymmetric pattern of the
dissociated dislocation. In fact, asymmetric dissociated non-
planar cores have recently been observed in molecular-
dynamics simulations in copper, in a dynamical context
where nonplanarity, greatly enhanced by a high applied
stress, arises in conjunction with fast motion.43 A link to
climb components might be that nonplanar cores can be
modeled by using “core field” corrections,44 obtained by pre-
scribing an effective asymmetric dipolar distribution of Bur-
gers vectors that includes out-of-plane components near the
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core, as a model to nonlinear effects.45 In this case however,
the climb components are “ad hoc” and ought not be attrib-
uted the physical character of lattice Burgers vectors. If this
connection proved true in the dynamical case, such correc-
tions could be derived using spatial derivatives of the dis-
placement field of climb components, although we shall not
pursue in this direction. On the other hand, isolated regular
climb components may enter the “dislocation part” of dis-
connections, a category of defects with a step associated to
interfaces between grains or phases, which can move in a
diffusionless fashion, e.g., in diffusionless transformation
such as twinning or martensitic transformations.46 Transonic
twinning dislocations were reported in atomistic
simulations.47 For all these reasons, we find it worthwhile to
write down the dynamic PN equation of a climb component.
In the case of interfacial dislocations, and because we deal
with isotropic media, our calculation only concerns situa-
tions where the phases in presence are of same equivalent
isotropic elastic moduli �twinning, notably�.

The dynamic displacement field of a climb component is
obtained as in the glide case with no additional complica-
tions. We only quote the result

ux�x,t� =
bcS

2	
��t�� 2


x
2
4� cS

cL

x2
x
2
2 − cL

2 t2�x2 − y2�
�cL

2 t2 − 
x
2
2

��cLt − 
x
2�

−
x2
x
2

2 − cS
2t2�x2 − y2�

�cS
2t2 − 
x
2

2
��cSt − 
x
2�	

+
cS

cL
 cL

2

cS
2 − 2���cLt − 
x
2�

�cL
2 t2 − 
x
2

2 � , �40a�

uy�x,t� =
bcS

2	
��t��−

2xy


x
2
4� cS

cL

2cL
2 t2 − 
x
2

2

�cL
2 t2 − 
x
2

2
��cLt − 
x
2�

−
2cS

2t2 − 
x
2
2

�cS
2t2 − 
x
2

2
��cSt − 
x
2�	

−
cL

cS

xy

�cL
2 t2 − x2�

��cLt − 
x
2�
�cL

2 t2 − 
x
2
2

+ 	
cL

cS
sign�y���− x���cLt − 
y
�� . �40b�

Writing �yy, the resolved stress of the climb component, as

�yy = � cL
2

cS
2 �uy,y − �yy

� � +  cL
2

cS
2 − 2�ux,x	 , �41�

its value on the plane y=0 reads

�yy�x,y = 0,t� =
b

	
�K1�x,t� +

�K2

�x
�x,t�	 −

b

2

cL

cS
2 ��− x����t�

�42�

with the kernels

K1�x,t� = −
2cS

x3 � cS

cL

2cL
2 t2 − x2

�cL
2 t2 − x2

��cLt − 
x
�

−
2cS

2t2 − x2

�cS
2t2 − x2

��cSt − 
x
�	
+

cLx

2cS
2t2

��cLt − 
x
�
�cL

2 t2 − x2
, �43a�

K2�x,t� =
cS

2

2cL
 cL

2

cS
2 − 2�2��cLt − 
x
�

�cL
2 t2 − x2

. �43b�

The corresponding dynamic PN equation is of the form �39�,
where now ��x��uy�x ,0+�−uy�x ,0−�, and where the coeffi-
cient of the third �instantaneous� term on the left-hand side
�lhs� of Eq. �39�, namely,  / �2cS�, should be replaced by
cL / �2cS

2� according to Eq. �42�. This case however remains
somewhat formal, for lack of available proper definitions of
the associated pullback force f����.

E. Static limit

A first independent check of the above results consists in
computing from Eqs. �28�, �36a�, �36b�, �40a�, and �40b� the
following “static” displacement field:

u�x� = lim
t→�

�
−�

t

d� u�x,�� . �44�

It is easily found that this integral applied to Eq. �28� gives
Eq. �16� back and that Eqs. �23a� and �23b� are retrieved
with �g=1 / �2cSt�→0 by applying it to Eqs. �36�. Likewise,
the static fields �Eqs. �24a� and �24b�� of the climb edge are
retrieved from Eq. �40�, with the following scaling parameter

in the logarithm: �c=�g�e1/2cL /cS�cL
2 /cS

2−1. For both “edges,”
the logarithmic divergence at large sizes is replaced by a
divergence at large times, the true static regime being
reached when � becomes of order the inverse system size.
Remark in passing that the dynamic ratio �c /�g found here is
different from its static value �c /�g=exp 1 / �1−2��
=exp�cL

2 /cS
2 −1� �see Sec. II C�, owing to differences in the

limiting process employed, unless cL=e1/2cS. The next time-
dependent correction in the asymptotic expansion at large
times of the integral in Eq. �44� is of order O�1 / t2�.

F. Stationary limit: Weertman’s equations

A less trivial independent check consists in computing the
stationary limit of the obtained dynamic PN equations. In the
stationary regime where the dislocation moves with constant
velocity v, an ansatz ��x , t�=��x−vt� should apply. It is ob-
served that consistency with this ansatz requires the applied
stress �a�x , t� to be either a constant or a front moving with
same velocity of the type �a�x , t�=�a�x−vt�. Since a stress
front necessarily propagates with one of the sound velocities,
the dislocation velocity v is then either equal to this sound
velocity—if the glide plane is aligned with the propagation
direction of the front or greater—if the glide plane is inclined
with respect to this direction. Thus, a stationary propagating
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front can only involve transonic or supersonic dislocations
and in this case �a�x−vt� prescribes the velocity.

Under any of these two conditions, it is demonstrated in
Appendix C for the screw and the glide edge �the climb edge
is left to the reader� that Weertman’s equations16 are re-
trieved in the following form, which encompasses all re-
gimes �subsonic, transonic for edge dislocations, and super-
sonic�:

−


	
A�v�p.v.� dx�

���x��
x − x�

+ B�v����x� + �a�x� = f����x�� ,

�45�

where for screw dislocations,

A�v� =
1

2
�1 − v2/cS

2��1 − 
v
/cS
� , �46a�

B�v� = sign�v�
1

2
�v2/cS

2 − 1��
v
/cS − 1� , �46b�

for glide edge dislocations �see also Ref. 26�,

A�v� = 2 cS

v
�2��1��1 − 
v
/cL� −

�3
4

�2
��1 − 
v
/cS�	 ,

�47a�

B�v� = 2 cS

v
�2��1��
v
/cL − 1� +

�3
4

�2
��
v
/cS − 1�	sign�v� ,

�47b�

and for climb edge dislocations,

A�v� = 2 cS

v
�2��2��1 − 
v
/cS� −

�3
4

�1
��1 − 
v
/cL�	 ,

�48a�

B�v� = 2 cS

v
�2��2��
v
/cS − 1� +

�3
4

�1
��
v
/cL − 1�	sign�v� .

�48b�

These coefficients are expressed in terms of the quantities
�i= 
1− �v /ci�2
1/2, with c1=cL, c2=cS, and c3=�2cS�c1.26

IV. CONCLUDING REMARKS

To summarize, dynamic extensions of the Peierls-Nabarro
equation were derived for screw and edge dislocations �of
the glide and climb types� using the Green’s function method
popularized by Mura2 and the Eshelby-type trick of using
identity �25�. Besides the instantaneous term that shows up
in these equations, the origin of which was traced to a miss-
ing distributional term in the displacements, an unexpected
feature of the dynamic PN equations is a term involving a
convolution with the second space derivative of the displace-
ment jump in both edge cases. The obtained equations for-
mally cover all velocity regimes, as indicated by their sta-
tionary limits. Leaving their solution to future work, we
conclude with some remarks.

Technically, this result was arrived at by using elementary
Volterra solutions proportional to ��t�, which simplifies cal-
culations. Our expressions for the dynamic stresses induced
by the continuous displacements � considerably differ from
previous results. Consider for instance a moving screw Vol-
terra dislocation at time-varying position ��t�, starting from
rest at t=0, represented by the function ��x , t�=b����t�−x�
with ��t�=0 for t�0. The time-dependent distortion uz,y gen-
erated by such a dislocation has been computed by
Markenscoff.22 Her result �also Eq. �1� of Ref. 25� consists of
a sum of two integrals, the second one being extremely sin-
gular on the glide plane y=0, added to a term that compen-
sates for the static field of the dislocation at rest prior to
motion. The singularity that develops in her second integral
in the limit y→0 greatly complicates the obtention of the
stress on the glide plane. On the contrary, this stress is
readily deduced from our Eq. �34�. One obtains for t�0,

2	�xz

b
=

1

cS
�

0

t d�

�t − ��2

v̄��1 − 
v̄
�
�1 − v̄2

−
	

cS
��� − x��̇

+
1

x
�1 − �1 − v̄0��1 − 
v̄0

2
�� , �49�

where we wrote for brevity

v̄�x,t,�� =
x − ����
cs�t − ��

�50�

and v̄0�x , t�= v̄�x , t ,0�. The last term in Eq. �49� stems from
an explicit integration over times ��0 and expresses the
progressive erosion of the static field within a shell of radius

x
�cst. Note that Eq. �49� remains extremely singular: be-
sides the Dirac term, the integral over � is ill defined at �
= t. As in the formalism of Markenscoff and co-workers,
these singularities arise because the Volterra dislocation is of
null width and can be regularized by using smoother core
functions. However, they do not arise in the same fashion.
Although the physical and mathematical contents of both
approaches ought to be identical, comparing them explicitly
proves difficult. For this reason, we found useful to give
straightforward independent checks by detailing in the ap-
pendix the steps leading to Weertman’s equations. It should
be noted that the latter derivation does not require separate
consideration of the different sonic regimes, contrary to pre-
vious works.

Next, the instantaneous term −� / �2cS����� /�t��x , t�, ab-
sent from Eshelby’s dynamic PN equation for screws, that
we obtain in the dynamic equations, is of dissipative nature.
It accounts for instantaneous losses by shear wave emission
transverse to the slip plane as the dislocation advances. In
opposition, the nonlocal kernels represent the waves on the
slip plane �of the shear type for screws, and of the shear and
longitudinal types for edges� that determine the core shape.
In the subsonic steady state, transverse radiative losses in
Weertman’s equations are exactly compensated by the energy
that flows to the core.26 This is the meaning of the compen-
sation of terms proportional to v that occurs in the calcula-
tions of Appendix C.
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Moreover, the participation of shear waves only to the
instantaneous loss term of the screw and glide edges is a
consequence of their in-plane character. As the instantaneous
term in the dynamic PN equation for the climb makes clear,
longitudinal waves too would be emitted by an additional
out-of-plane component of the Burgers vector, leading to fur-
ther dissipation. In this connection, Gumbsch and Gao17 al-
ready noted that an out-of-plane component would add some
drag to the energetically favorable stationary radiation-free
transonic regime5 for glide edges that occurs at v=c3. This
can be seen from Weertman’s equations. Indeed, radiative
losses are proportional to B�v� in Eqs. �46b�, �47b�, and
�48b�,26 and whereas B�c3�=0 for the glide edge, this term is
nonzero for the climb. For lack of proper knowledge about it,
we preferred not to conclude on the form of the pullback
force in the case of the PN equation for a climb component
but potentials for glide and climb edge components of the
same dislocation ought to be coupled in some manner.

Furthermore, although admitting arbitrary velocities, it is
not clear to us at present whether the dynamic PN equations
should or not require the same additional regularization as
Weertman’s, their stationary limit, to produce solutions that
behave correctly. As they stand Weertman’s equations are
indeed known to be defective for two different reasons.26

First, in presence of a homogeneous applied stress, these
equations admit no single-dislocation solution due to absence
of dissipation in the subsonic regime v�cS where B�v�=0.
This problem finds its origin in the static PN equation.36 To
correct it, a phenomenological additional drag term must be
prescribed to account for losses of lattice origin.26 Evidently,
such a term can be added as well in the form −���� /�t��x , t�
�� being some drag coefficient� to the lhs of our Eqs. �35�
and �39�, thereby “renormalizing” the already present loss
term but at the risk of excessively damping sounds waves.27

The second reason is that for a supersonic transition to take
place, relativistic core contraction—a feature of the solutions
to Weertman’s equations that plausibly carries over to some
extent to the instationary regime—must be forbidden below
some microscopic scale to prevent energy from becoming
infinite.13 In the stationary limit a phenomenological imple-
mentation of this constraint consists in curing Weertman’s
equations by adding a smoothing gradient term,26 which pro-
vides a connection with the spatial-dispersion effects alluded
to in the introduction. Recently, a simple device has been
proposed allowing one to overcome both problems at the
same time. It essentially consists in a suitable coarse-grained
reinterpretation of the PN equation in the static case.27 A
similar procedure could be applied to the dynamic equations.
However, it might occur that consideration of full dynamical
behavior alleviate the need for such regularizations.

Finally, anisotropy has important consequences on the
stress/velocity dependence of dislocation motion, owing to
the presence of three sound waves in anisotropic media.8 The
present theory could be extended to this case by appealing to
available elementary anisotropic dynamic solutions for
displacements.48
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APPENDIX A: STATIC DISPLACEMENTS BY THE
GREEN’S FUNCTION METHOD

This section examines only the calculation for the Volterra
screw dislocation, as an illustration of how distributional
parts emerge from otherwise standard Fourier integrals. For
completeness, like calculations for the glide and climb edges
are provided in a separate document.37 From Eq. �7� and with
�ij

� given by Eq. �12a�, one has

�ij = Cijkl�kl
� = �32

� ��i3� j2 + �i2� j3� �A1�

so that with the static Green’s function �Eq. �10��,

�Gijkk�kj��k,t� =
1

k
�k̂3�i2 + k̂2�i3 −

1

�1 − ��
k̂ik̂3k̂2	�32

� �k,t� .

�A2�

Then, specializing Eq. �6� to the static case by carrying out
the time integration �Eq. �44�� in the first place,

uz�x,y� = b� dk1dk2

�2	�2

ei�k1x+k2y�

k1 + i�

k2

k1
2 + k2

2 . �A3�

To arrive at this integral, the FT of �kl
� was carried out with

the help of the �one-dimensional� FT of ��−x�, which evalu-
ates to i / �k1+ i�� with �→0+. In Eq. �A3� the integral over k2
is done first, so as to account for the prescription �→0 in the
remaining integral over k1. By contour integration,

� dk2

2	

k2eik2y

k1
2 + k2

2 =
i

2
sign�y�e−
k1

y
 �A4�

and the remaining integral over k1 is “folded” on the positive
semiaxis with a change in variables before letting �→0. This
leads to the integral

�
0

+� dk1

2	

eik1x

k1 + i�
e−
k1

y
 = i�

0

+� dk1

	
e−k1
y


�� k1

k1
2 + �2sin�k1x�

−
�

k1
2 + �2cos�k1x�	

=i�
0

+� dk1

	
e−k1
y
� sin�k1x�

k1
− 	��k1�	

�A5�

The way the Dirac distribution arises in Eq. �A5� makes clear
that the prescription �0

+�dk1��k1�=1 /2 holds. Moreover
�G.R. 3.941–1�,
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�
0

+� dk1

k1
e−k1
y
 sin�k1x� = sign�x��

0

+� dk1

k1
e−k1


y


x
 sin�k1�

= sign�x�tan−1 
x


y


�A6�

so that

�
0

+� dk1

2	

eik1x

k1 + i�
e−
k1

y
 = − i���− x� +

1

	
sign�x�arctan


y


x
 	 .

�A7�

Multiplying by the factor �i /2�sign�y� coming from Eq. �A4�
eventually yields

� dk1dk2

�2	�2

ei�k1x+k2y�

k1 + i�

k2

k1
2 + k2

2 =
1

2	
arctan

y

x
+

1

2
sign�y���− x� ,

�A8�

whence expression �16� of uz. The edge cases are addressed
by similar means.37

APPENDIX B: DYNAMIC DISPLACEMENTS

1. Screw dislocation

The instantaneous screw is generated by the eigendistor-
tion of nonzero component �zy

� �x , t�=b��y���−x���t�. With
now k= �k1

2+k2
2�1/2 and using Eq. �6�, the displacement takes

on the form

uz�x,t� = − i�
−�

+� d3k

�2	�3 �G3jkk� jk��k,t�eik·x = bcS��t�I�1�

��x,y,t� , �B1�

where the following integral was introduced:

I�1��x,y,t� =� dk1dk2

�2	�2

sin�ckt�
k1 + i�

k̂2ei�k1x+k2y�

= − i
�

�y
� dk1

2	

eik1x

k1 + i�
� dk2

2	

sin�ctk�
k

eik2y .

�B2�

In this expression, the inner integral over k2 is �G.R.
3.876–1�

� dk2

2	

sin�ctk�
k

eik2y =
1

2
J0�
k1
�c2t2 − y2�1/2���ct − 
y
� .

�B3�

For ct� 
y
, going to the limit �→0 as in Eq. �A5�, the re-
maining integral is �G.R. 6.693–7�

− i� dk1

2	

eik1x

k1 + i�
J0�
k1
�c2t2 − y2�1/2�

= �
0

� dk1

	
� sin�k1x�

k1
− 	��k1�	J0�k1�c2t2 − y2�1/2�

= −
1

2
+

1

	
�

0

� du

u
sin�ux�c2t2 − y2�−1/2�J0�u�

= −
1

2
+

1

2
sign�x���
x
2

2 − c2t2�

+
1

	
arcsin x

�c2t2 − y2���c2t2 − 
x
2
2�

= � 1

	
arcsin x

�c2t2 − y2� −
1

2
sign�x�	��c2t2 − 
x
2

2�

− ��− x� . �B4�

Multiplying by �1 /2���ct− 
y
� according to Eq. �B3� and dif-
ferentiating the product with respect to y according to Eq.
�B2� yields

I�1��x,y,t� =
1

2	� xy

�c2t2 − y2�
��ct − 
x
2�
�c2t2 − 
x
2

2

+ 	 sign�y���− x���ct − 
y
�	 . �B5�

Equation �28� follows.

2. Glide edge dislocation

The only nonzero component of � is now �12
� �x , t�

=b��y���−x���t� and kk�kj =�12
� �k1� j2+k2� j1�. Thus

Gijkk�kj = ��t�cS
2� 1

cS
sin�cSkt��k̂1�i2 + k̂2�i1 − 2k̂ik̂1k̂2�

+
2

cL
sin�cLkt�k̂ik̂1k̂2	�xy

� . �B6�

Setting k= �k1
2+k2

2�1/2, the nonzero components of u are ob-
tained as

ux�x,t� = − i�
−�

+� d3k

�2	�3 �G1jkk� jk��k,t�eik·x

= bcS
2��t� � dk1dk2

�2	�2 ei�k1x+k2y�� sin�cSkt�k2

cSk�k1 + i��

+ 2� sin�cLkt�
cL

−
sin�cSkt�

cS
	 k1k2

k3 � �B7a�

and
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uy�x,t� = − i�
−�

+� d3k

�2	�3 �G2jkk� jk��k,t�eik·x

= bcS
2��t� � dk1dk2

�2	�2 ei�k1x+k2y�� sin�cSkt�
cSk

+ 2� sin�cLkt�
cL

−
sin�cSkt�

cS
	 k2

2

k3� . �B7b�

In these expressions, the limit �→0 was taken wherever pos-
sible �cancellation of k1 between numerator and denominator
of fractions�. Four different types of integrals are involved.
The first one, I�1�, was defined in Eq. �B2� and computed in
Eq. �B5�. The three others ones are �G.R. 8.411–5 and
6.671–7�

I�2��x,y,t� =� dk1dk2

�2	�2

sin�ckt�
k

ei�k1x+k2y�

= �
0

� dk

2	
sin�ckt�J0�k
x
2� =

1

2	

��ct − 
x
2�
�c2t2 − 
x
2

2
,

�B8a�

I�3��x,y,t� =� dk1dk2

�2	�2

sin�ckt�k1k2

k3 ei�k1x+k2y� =
�J

�x
,

�B8b�

I�4��x,y,t� =� dk1dk2

�2	�2

sin�ckt�k2
2

k3 ei�k1x+k2y� =
�J

�y
,

�B8c�

where the following integral was introduced:

J�x,y,t� = − i� dk1dk2

�2	�2

sin�ckt�k2

k3 ei�k1x+k2y�

= sign�y��
0

� dk1

	

cos�k1x�
k1

� �
0

� dq

	

q sin�qk1
y
�
�1 + q2�3/2 sin�ctk1�1 + q2�1/2� .

�B9�

Its expression in polar coordinates shows that J is finite. The
last equality in Eq. �B9� follows from elementary symmetry
considerations and from a change of variables k2→q
=k2 / 
k1
. Consider first the inner integral and introduce for
convenience �a and b are arbitrary positive constants�,

j�a,b� = �
0

� dq

	

q sin�bq�
�1 + q2�3/2sin�a�1 + q2�1/2� . �B10�

This integral is not tabulated for all positive �a ,b� pairs �see
G.R. 3.875–3 for a�b�. However, one integration by parts
over q and the use of �G.R. 3.876–1� show that �J0 is the
Bessel function�

j�a,b� = a
� j

�a
�a,b� + �

0

� dq

	

cos�bq�
�1 + q2�1/2sin�a�1 + q2�1/2�

= a
� j

�a
�a,b� +

b

2
J0��a2 − b2�1/2���a − b� . �B11�

Thus, j is a continuous solution of a homogeneous �respec-
tively, nonhomogeneous� differential equation for a�b �re-
spectively, a�b�. This differential equation is solved by
variation in constants with condition j�� ,b�=0 �see G.R.
6.554–4 for the integration constant�. A change of variables
then gives

j�a,b� =
a

2�e−b − b��a − b��
0

�a2 − b2�1/2 uJ0�u�du

�u2 + b2�3/2	 .

It follows that

J�x,y,t� = sign�y��
0

� dk1

	

cos�k1x�
k1

j�ctk1, 
y
k1� =
ct

2	
sign�y�

���
0

�

dk1 cos�k1x�e−k1
y


− 
y
��ct − 
y
��
0

�c2t2 − y2�1/2 udu

�u2 + y2�3/2

� �
0

�

dk1 cos�k1x�J0�uk1�	 , �B12�

that is, with �G.R. 3.893–2� and �G.R. 6.671–8�,

J�x,y,t� =
cty

2	� 1

x2 + y2 − ��ct − 
x
2�

��

x


�c2t2 − y2�1/2 udu

�u2 + y2�3/2
1

�u2 − x2�1/2	
=

ct

2	

y


x
2
2�1 −

1

ct
�c2t2 − 
x
2

2��ct − 
x
2�	 .

�B13�

Integrals I�3� and I�4� follow from differentiation according to
Eqs. �B8b� and �B8c� as

I�3��x,y,t� =
ct

2	

xy


x
2
4� 2c2t2 − 
x
2

2

ct�c2t2 − 
x
2
2
��ct − 
x
2� − 2	 ,

I�4��x,y,t� =
ct

2	

1


x
2
4� x2
x
2

2 − c2t2�x2 − y2�

ct�c2t2 − 
x
2
2

��ct − 
x
2�

+ �x2 − y2�	 . �B14�

Gathering all contributions within Eqs. �B7a� and �B7b� then
yields displacements �36a� and �36b�.
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APPENDIX C: STATIONARY LIMIT

1. Screw dislocation

Using �a�x , t�=�a�x−vt� and the ansatz ��x , t�=��x−vt�
�see Sec. III F� in Eq. �27�, one sees that ��x� obeys the
PN-type equation

−


	
� dx�Kv�x − x�����x�� +

v
2cS

���x� + �a�x� = f����x�� ,

�C1�

where

Kv�x� � �
0

�

dt K�x + vt,t� =� dk

2	
eikxKv�k� �C2�

which features the space Fourier transform of Kv�x� in the
form of a one-sided integral over time,

Kv�k� � �
0

�

dt eikvtK�k,t� . �C3�

In this expression K�k , t� is the space FT of K�x , t� �given in
Eq. �30��, which reads �G.R. 3.752–2; J1 is the Bessel func-
tion�

K�k,t� = −
ik

cSt2��t��
0

cSt

dx�cS
2t2 − x2 cos�kx�

= −
i	

2t
��t�J1�cSkt� . �C4�

The expression of Kv�k� is evaluated from Eq. �C3� with the
help of the integrals �G.R. 6.693–1 and 6.693–2�

�
0

� dt

t
cos�kvt�J1�kcSt� = sign�k��1 − v2/cS

2��1 − 
v
/cS� ,

�C5a�

�
0

� dt

t
sin�kvt�J1�kcSt�

= �v/cS� − sign�v��v2/cS
2 − 1��
v
/cS − 1� , �C5b�

from which

Kv�k� = − i	 sign�k�
1

2
�1 − v2/cS

2��1 − 
v
/cS� +
	

2
��v/cS�

− sign�v��v2/cS
2 − 1��
v
/cS − 1�� . �C6�

Since −i	 sign�k� is the FT of p.v. 1 /x, the Fourier inversion
of Kv�k� is immediate as

Kv�x� = ��1 − 
v/cS
�
1

2
�1 − v2/cS

2p.v.
1

x
+

	

2
��v/cS�

− sign�v��v2/cS
2 − 1��
v
/cS − 1����x� . �C7�

Putting this expression into Eq. �C1� one sees that the instan-
taneous terms �proportional to v� cancel out mutually. Weert-
man’s Eq. �45� with coefficients �Eqs. �46a� and �46b�� fol-
lows.

2. Glide edge dislocation

Again using �a�x , t�=�a�x−vt� and the ansatz ��x , t�
=��x−vt� in the dynamic PN Eq. �39� for the glide edge, the
resulting stationary equation takes on the form �C1� where
now

Kv�x� = �
0

�

dt�K1�x + vt,t� −
�K2

�x
�x + vt,t�	 �C8�

in which the kernels K1 and K2 are given by Eq. �38�. Pro-
ceeding as for the screw in Appendix C 1, one evaluates first
the Fourier transforms of K1 and �K2 /�x with respect to x.
By means of changes of variable x→u=x / �cLt� and x→u
=x / �cSt�, and using the fact that K1�x , t� is odd in x and that
K2�x , t� is even, one gets with �G.R. 3.753–5� and �G.R.
3.753–2�

K1�k,t� = −
i	

2t
J1�kcSt� −

4icS
2

t
sign�k�

��
0

1

du� sin�
k
cLtu�
cL

2 −
sin�
k
cStu�

cS
2 	 2 − u2

u3�1 − u2
,

�C9a�

� �K2

�x
	�k,t� = − i

	

2
kcSJ0�kcSt� . �C9b�

The next step consists in obtaining �0
�dteikvtK1�k , t� in which

we write

eikvt = cos�kvt� + i sign�k�sign�v�sin�
k

v
t� . �C10�

With Eqs. �C9a� and �C10�, the latter integral involves the
following integrals over time, where c stands either for cL or
for cS �G.R. 3.741–1,2�,

�
0

� dt

t
cos�
k
vt�sin�
k
ctu� =

	

2
��u − 
v
/c� , �C11a�

�
0

� dt

t
sin�
k

v
t�sin�
k
ctu� =

1

4
logu + 
v
/c

u − 
v
/c�
2

.

�C11b�

The remaining integrals over u combined with Eq. �C11� are
evaluated using the pair of integrals,

�
0

1

du
	

2
��u − 
v
/c�

2 − u2

u3�1 − u2
=

	

2

c2

v2
�1 − v2/c2��1 − 
v
/c� ,

�C12a�

�
0

1

du
1

4
logu + 
v
/c

u − 
v
/c
�2 2 − u2

u3�1 − u2
=

2c


v
��

1 du

u2

+ �
0

1

du�logu + 
v
/c
u − 
v
/c

�2 2 − u2

4u3�1 − u2
−

2c


v

1

u2	 =
2c


v
�

−
2c


v

+ �� c


v
u
−

�1 − u2

4u2 logu + 
v
/c
u − 
v
/c

�2	�
0

1
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−
c


v

p.v.�

0

1 du

u2 �1 +
v2

c2

�1 − u2

u2 − �v/c�2	 = lim
x→0+

c2t


v

2

x

−
	

2

c2

v2
�v2/c2 − 1��
v
/c − 1� . �C12b�

In Eq. �C12b� the following transformations were applied.
The integral is divergent at u=0. Its divergent part is ex-
tracted first and expressed in terms of x, recalling that u was
introduced via the change in variables u=x / �ct�. In this form,
it is proportional to c2 and cancels out when assembling con-
tributions involving cL and cS in the final step of the calcu-
lation. Meanwhile, the remaining finite part is integrated by
parts and the spurious singularity at u= 
v
 /c introduced by
this transformation for 
v
�c is removed by the principal-
value prescription. Appealing next to Eqs. �C5a� and �C5b�
to deal with the Bessel function in Eq. �C9a�, these contri-
butions to Eq. �C9a� lead to

�
0

�

dteikvtK1�k,t� = − 2i	 sign�k�
cS

2

v2��1 − v2/cL
2��1 − 
v
/cL�

+  v2

4cS
2 − 1��1 − v2/cS

2��1 − 
v
/cS�	
− 2	 sign�v�

cS
2

v2��v2/cL
2 − 1��
v
/cL − 1�

+  v2

4cS
2 − 1��v2/cS

2 − 1��
v
/cS − 1�	
+

	v
2cS

. �C13�

Turning now to K2 one finds, using Eqs. �C9b� and �C10� and
�G.R. 6.671–7,8�

�
0

�

dteikvt� �K2

�x
	�k,t� = − i

	

2
sign�k�

��1 − 
v
/cS�
�1 − v2/cS

2

+ sign�v�
	

2

��
v
/cS − 1�
�v2/cS

2 − 1
.

�C14�

The contributions of K1, �K2 /�x are brought back into Kv�k�,
whose Fourier inversion is immediate as in the screw case,
see Eqs. �C6� and �C7�. The result reads

Kv�x� = A�v�p.v.
1

x
− 	B�v���x� +

	

2

cLv
cS

2 ��x� , �C15�

with A�v� and B�v� given by Eqs. �47a� and �47b�. This
brings the present edge version of Eq. �C1� down to Weert-
man’s equation.
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